The blessed seed and blood cancers

Dr. Weeks’ Comment: The cancers of the blood – Lymphomas and leukemia – can be daunting for oncologist. We share here the scientific peer-reviewed articles which highlight the role of a component of Black Cumin Seed – thymoquinone – in helping defeat Lymphoma and Leukemia. Also known as “the blessed seed”, the black cumin seed has been found to be beneficial for people fighting all cancers. 

 

 

PLoS One. 2013;8(3):e60540. doi: 10.1371/journal.pone.0060540. Epub 2013 Mar 28.

Phosphorylated IκBα predicts poor prognosis in activated B-cell lymphoma and its inhibition with thymoquinoneinduces apoptosis via ROS release.

Abstract

Activated B-cell lymphoma (ABC), one of the three subtypes of Diffuse Large B-cell Lymphoma (DLBCL) has the worst survival rate after upfront chemotherapy and is characterized by constitutively activated NFκB. We therefore studied the role of NFκB In a cohort of clinical DLBCL samples and ABC cell lines. In our clinical tissue microarray cohort of DLBCL samples, p-IκBα was detected in 38.3% of ABC DLBCL and was an independent prognostic marker for poor survival. In vitro, we found that Thymoquinone (TQ), a natural compound isolated from Nigella sativa caused release of ROS in ABC cells. TQ-mediated release of ROS in turn inhibited NFκB activity by dephosphorylating IκBα and decreased translocation of p65 subunit of NFκB in the nuclear compartment in ABC cell lines. This led to inhibition of cell viability and induction of mitochondrial dependent apoptosis in ABC-DLBCL cell lines. Additionally, TQ treatment also caused up-regulation of death receptor 5 (DR5), however, up-regulation of DR5 did not play a role in TQ-induced apoptosis. Finally, combination of sub-optimal doses of TQ and TRAIL induced efficient apoptosis in ABC-DLBCL cell lines. These data show that p-IκBα can be used as a prognostic marker and target for therapy in this aggressive sub-type of DLBCL and TQ may play an important role in the management of DLBCL in the future.   Free PMC Article

AND

Free Radic Biol Med. 2011 Apr 15;50(8):978-87. doi: 10.1016/j.freeradbiomed.2010.12.034. Epub 2011 Jan 4.

Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma.

Abstract

We provide evidence that thymoquinone (TQ), a natural compound isolated from Nigella sativa, induces growth inhibition and apoptosis in several primary effusion lymphoma (PEL) cell lines. Our data demonstrate that TQ treatment results in down-regulation of constitutive activation of AKT via generation of reactive oxygen species (ROS) and it causes conformational changes in Bax protein, leading to loss of mitochondrial membrane potential and release of cytochrome c to the cytosol. This leads to activation of caspase-9, caspase-3, and polyadenosine 5′-diphosphate ribose polymerase cleavage, leading to caspase-dependent apoptosis. Pretreatment of PEL cells with N-acetylcysteine, a scavenger of ROS, prevented TQ-mediated effects. In addition, subtoxic doses of TQ sensitized PEL cells to TRAIL via up-regulation of DR5. Altogether, these findings demonstrate that TQ is a potent inducer of apoptosis in PEL cells via release of ROS. They also raise the possibility that incorporation of TQ in treatment regimens for primary effusion lymphomas may provide a novel approach to sensitizing malignant cells and provide a molecular basis for such future translational efforts.

AND

Invest New Drugs. 2012 Oct;30(5):1813-9. doi: 10.1007/s10637-011-9734-1. Epub 2011 Sep 1.

Anti-neoplastic agent thymoquinone induces degradation of α and β tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts.

Abstract

The microtubule-targeting agents derived from natural products, such as vinca-alkaloids and taxanes are an important family of efficient anti-cancer drugs with therapeutic benefits in both haematological and solid tumors. These drugs interfere with the assembly of microtubules of α/β tubulin heterodimers without altering their expression level. The aim of the present study was to investigate the effect of thymoquinone (TQ), a natural product present in black cumin seed oil known to exhibit putative anti-cancer activities, on α/β tubulin expression in human astrocytoma cells (cell line U87, solid tumor model) and in Jurkat cells (T lymphoblastic leukaemia cells). TQ induced a concentration- and time-dependent degradation of α/β tubulin in both cancer cell types. This degradation was associated with the up-regulation of the tumor suppressor p73 with subsequent induction of apoptosis. Interestingly, TQ had no effect on α/β tubulin protein expression in normal human fibroblast cells, which were used as a non-cancerous cell model. These data indicate that TQ exerts a selective effect towards α/β tubulin in cancer cells. In conclusion, the present findings indicate that TQ is a novel anti-microtubule drug which targets the level of α/β tubulin proteins in cancer cells. Furthermore, they highlight the interest of developing anti-cancer therapies that target directly tubulin rather than microtubules dynamics.

AND

 

Clin Lymphoma Myeloma Leuk. 2014 Sep;14 Suppl:S46-55. doi: 10.1016/j.clml.2014.04.014.

Antiproliferative and proapoptotic effects of topotecan in combination with thymoquinone on acute myelogenous leukemia.

Abstract

BACKGROUND:

Topotecan has shown promising antineoplastic activity in solid tumors and acute leukemia. Because of the primary dose-limiting toxicity of topotecan, it is necessary to identify other agents that can work synergistically with topotecan, potentially increasing its efficacy while limiting its toxicity. Many studies showed synergism in combination of topotecan with gemcitabine and bortezomib. Other studies report the increase in growth inhibition of gemcitabine or oxaliplatin when cells were preexposed to naturally occurring drugs such as thymoquinone. The aim of this project was to study the mode of action of topotecan along with thymoquinone, on survival and apoptosis pathways in acute myelogenous leukemia (AML) cell lines, and to investigate the potential synergistic effect of thymoquinone on topotecan.

RESULTS:

Thymoquinone and topotecan exhibited antiproliferative effects on U937 cells when applied separately. In combination, the reduction in proliferation was extremely significant with a major increase in the expression levels of Bax/Bcl2, p53, and caspase-3 and -9. Preexposure with thymoquinone resulted in an increase in cell growth inhibition compared with topotecan treatment.

CONCLUSION:

Thymoquinone, when combined with topotecan in noncytotoxic doses, produced synergistic antiproliferative and proapoptotic effects in AML cells. Preexposure to thymoquinone seems to be more effective than simultaneous application with topotecan.

`

Share This Post

Dr. Weeks’ Comment: The cancers of the blood – Lymphomas and leukemia – can be daunting for oncologist. We share here the scientific peer-reviewed articles which highlight the role of a component of Black Cumin Seed – thymoquinone – in helping defeat Lymphoma and Leukemia. Also known as “the blessed seed”, the black cumin seed…
&source=WeeksMD">