Melatonin helps people fight Cancer

Dr. Weeks’ Comment: Melatonin is not just a sleep aid nor is it simply a brain antioxidant. Thanks to the pioneering work of Walter Pierpaoli MD in Italy and Dr. Russell Reiter PhD at U Texas (see articles below) we know that melatonin has powerful systemic healing benefits.  In this post, we review how melatonin in doses greatly exceeding the standard 3 mg dosage is important to add to your healing protocol.  For pure melatonin powder at optimal dosages of 60mg three times a day,  CLICK HERE.

~~

Here are some powerful articles to consider: 

Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis.

  2017 Apr 17;18(4). pii: E843. doi: 10.3390/ijms18040843.

Abstract

There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancerresearch has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin‘s co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies.

Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.

AND

2017 Jan;62(1). doi: 10.1111/jpi.12370. Epub 2016 Nov 25.

Cancer metastasis: Mechanisms of inhibition by melatonin.

Su SC1,2, Hsieh MJ3,4,5, Yang WE4,6, Chung WH1,2,7, Reiter RJ8, Yang SF4,6.
  2017 Jan;62(1). doi: 10.1111/jpi.12370. Epub 2016 Nov 25.

Abstract

Melatonin is a naturally occurring molecule secreted by the pineal gland and known as a gatekeeper of circadian clocks. Mounting evidence indicates that melatonin, employing multiple and interrelated mechanisms, exhibits a variety of oncostatic properties in a myriad of tumors during different stages of their progression. Tumor metastasis, which commonly occurs at the late stage, is responsible for the majority of cancer deaths; metastases lead to the development of secondary tumors distant from a primary site. In reference to melatonin, the vast majority of investigations have focused on tumor development and progression at the primary site. Recently, however, interest has shifted toward the role of melatonin on tumor metastases. In this review, we highlight current advances in understanding the molecular mechanisms by which melatonin counteracts tumor metastases, including experimental and clinical observations; emphasis is placed on the impact of both cancer and non-neoplastic cells within the tumor microenvironment. Due to the broad range of melatonin‘s actions, the mechanisms underlying its ability to interfere with metastases are numerous. These include modulation of cell-cell and cell-matrix interaction, extracellular matrix remodeling by matrix metalloproteinases, cytoskeleton reorganization, epithelial-mesenchymal transition, and angiogenesis. The evidence discussed herein will serve as a solid foundation for urging basic and clinical studies on the use of melatonin to understand and control metastatic diseases.

 

AND

Melatonin enhances hyperthermia-induced apoptotic cell death in human leukemia cells.

  2016 Oct;61(3):381-95. doi: 10.1111/jpi.12356. Epub 2016 Aug 13.

Abstract

Melatonin is an endogenous indoleamine with a wide range of biological functions. In addition to modulating circadian rhythms, it plays important roles in the health as an antioxidant. Melatonin has also the ability to induce apoptosis in cancer cells and to enhance the antitumoral activity of chemotherapeutic agents. In this study, the effect of melatonin on hyperthermia-induced apoptosis was explored using human leukemia cells. The results demonstrate that melatonin greatly improved the cytotoxicity of hyperthermia in U937 cells. The potentiation of cell death was achieved with 1 mmol/L concentrations of the indoleamine but not with concentrations close to physiological levels in blood (1 nmol/L). This effect was associated to an enhancement of the apoptotic response, revealed by an increase in cells with hypodiploid DNA content and activation of multiple caspases (caspase-2, caspase-3, caspase-8, and caspase-9). Melatonin also increased hyperthermia-induced Bid activation as well as translocation of Bax from the cytosol to mitochondria and cytochrome c release. Hyperthermia-provoked apoptosis and potentiation by melatonin were abrogated by a broad-spectrum caspase inhibitor (z-VAD-fmk) as well as by specific inhibitors against caspase-8 or caspase-3. In contrast, blocking of the mitochondrial pathway of apoptosis either with a caspase-9 inhibitor or overexpressing the anti-apoptotic protein Bcl-2 (U937/Bcl-2) reduced the number of apoptotic cells in response to hyperthermia but it was unable to suppress melatonin enhancement. Melatonin appears to modulate the apoptotic response triggered by hyperthermia in a cell type-specific manner as similar results were observed in HL-60 but not in K562 or MOLT-3 cells.

AND

Melatonin as a potential anticarcinogen for non-small-cell lung cancer.

2016 Jul 19;7(29):46768-46784. doi: 10.18632/oncotarget.8776.

Abstract

Non-small-cell lung cancer (NSCLC) is a leading cause of death from cancer worldwide. Melatonin, an indoleamine discovered in the pineal gland, exerts pleiotropic anticancer effects against a variety of cancer types. In particular, melatonin may be an important anticancer drug in the treatment of NSCLC. Herein, we review the correlation between the disruption of the melatonin rhythm and NSCLC incidence; we also evaluate the evidence related to the effects of melatonin in inhibiting lung carcinogenesis. Special focus is placed on the oncostatic effects of melatonin, including anti-proliferation, induction of apoptosis, inhibition of invasion and metastasis, and enhancement of immunomodulation. We suggest the drug synergy of melatonin with radio- or chemotherapy for NSCLC could prove to be useful. Taken together, the information complied herein may serve as a comprehensive reference for the anticancer mechanisms of melatonin against NSCLC, and may be helpful for the design of future experimental research and for advancing melatonin as a therapeutic agent for NSCLC.

 

AND

Inhibition of ERK1/2 Signaling Pathway is Involved in Melatonin‘s Antiproliferative Effect on Human MG-63 Osteosarcoma Cells.

  2016;39(6):2297-2307. Epub 2016 Nov 7.

Abstract

BACKGROUND:

In a previous study, we found that melatonin inhibits MG-63 osteosarcoma cell proliferation; however, the underlying mechanisms remain elusive. Mitogen-activated protein kinase (MAPK) and Akt signaling pathways play key roles in the anticancer effects of melatonin.

CONCLUSION:

These findings suggest that melatonin‘s antiproliferative action is mediated by inhibition of the ERK1/2 signaling pathway rather than the p38, JNK, or Akt pathways.

AND

Breast cancer cells: Modulation by melatonin and the ubiquitin-proteasome system–a review.

2015 Dec 5;417:1-9. doi: 10.1016/j.mce.2015.09.001. Epub 2015 Sep 9.

Abstract

Melatonin inhibits human breast cancer cells stimulated with estrogen. This antiproliferative action depends on the presence of the estrogen receptor alpha (ERα) in the human MCF-7 cell line and is strictly dose-dependent. Since researchers concerned with melatoninand breast cancer have not considered the relevance of the ubiquitin-proteasome system to this research in this review we do so. The fact that the first breast cancer susceptibility gene to be identified, Brca1, functions as a ubiquitin ligase indicates that the ubiquitin-proteasome system has a role in regulating susceptibility to breast cancer. While mutations of this gene increase the incidence of breast cancer, the wild type gene suppresses estrogen-dependent transcriptional events relying on the estrogen receptor ERα. Three other ubiquitin ligases, SCF(Skp2), E6AP and APC, interact directly with ERα at the ERE and AP-1 promoters of ERα target genes. Melatonin, like proteasome inhibitors, decreases estrogen-induced gene transcription. Indeed, it has been reported that melatonin specifically inhibits estrogen-induced transcription mediated by ERα at the ERE and AP1 gene promoters. Herein, we present a model in which the inhibitory action of melatonin on MCF-7 cells is mediated, directly or indirectly, by the ubiquitin-proteasome system. In this model ERα, apoptotic proteins, and cell cycle proteins, all influenced by melatonin, are substrates of key ubiquitin ligases including SCF(Skp2), E6AP, and SCF(B-TrCP). Since dysfunction of the ubiquitin-proteasome system is a risk factor for breast cancer, this model provides a context in which to test the clinical potential, and limitations, of melatonin and proteasome inhibitors.

AND

Melatonin as a treatment for gastrointestinal cancer: a review.

  2015 May;58(4):375-87. doi: 10.1111/jpi.12227. Epub 2015 Mar 23.

Abstract

Gastrointestinal cancer is a disease that affects the population worldwide with high morbidity and mortality. Melatonin, an endogenously produced molecule, may provide a defense against a variety of cancer types. In particular, the ability of melatonin to inhibit gastrointestinal cancer is substantial. In this review, we first clarify the relationship between the disruption of the melatonin rhythm and gastrointestinal cancer (based on epidemiologic surveys and animal and human studies) and summarize the preventive effect of melatonin on carcinogenesis. Thereafter, the mechanisms through which melatonin exerts its anti-gastrointestinal cancer actions are explained, including inhibition of proliferation, invasion, metastasis, and angiogenesis, and promotion of apoptosis and cancer immunity. Moreover, we discuss the drug synergy effects and the role of melatonin receptors involved in the growth-inhibitory effects on gastrointestinal cancer. Taken together, the information compiled here serves as a comprehensive reference for the anti-gastrointestinal cancer actions of melatonin that have been identified to date and will hopefully aid in the design of further experimental and clinical studies and increase the awareness of melatonin as a therapeutic agent in cancers of the gastrointestinal tract.

 AND

Melatonin potentiates the antitumor effect of curcumin by inhibiting IKKβ/NF-κB/COX-2 signaling pathway.

2017 Oct;51(4):1249-1260. doi: 10.3892/ijo.2017.4097. Epub 2017 Aug 22.

Abstract

Curcumin, a natural polyphenolic compound, has commonly been used as a food additive or in many traditional medicine remedies for over 2,000 years in many Asian countries. Melatonin is a hormone secreted from pineal glands of mammals and possesses diverse physiological functions. Both curcumin and melatonin have the effective potential to inhibit proliferation of various types of cancers, but there is no report on their combination for bladder cancer treatment, and the underlying mechanism remains poorly understood. In the present study, we investigated whether the combination of curcumin and melatonin leads to an enhanced inhibition of cell proliferation in bladder cancer cells. Our results showed that the combinational treatment enhanced the repression of nuclear translocation of NF-κB and their binding on COX-2 promoter via inhibiting IKKβ activity, resulting in inhibition of COX-2 expression. In addition, combined treatment with curcumin and melatonin induced cell apoptosis in bladder cancer through enhancing the release of cytochrome c from the mitochondrial intermembrane space into the cytosol. These results, therefore, indicated that melatonin synergized the inhibitory effect of curcumin against the growth of bladder cancer by enhancing the anti-proliferation, anti-migration, and pro-apoptotic activities, and provide strong evidence that combined treatment with curcumin and melatonin might exhibit an effective therapeutic option in bladder cancer therapy.

AND

2017 Mar;62(2). doi: 10.1111/jpi.12380. Epub 2016 Dec 24.

Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways.

2017 Mar;62(2). doi: 10.1111/jpi.12380. Epub 2016 Dec 24.

Abstract

5-Fluorouracil (5-FU) is one of the most commonly used chemotherapeutic agents in colon cancer treatment, but has a narrow therapeutic index limited by its toxicity. Melatonin exerts antitumor activity in various cancers, but it has never been combined with 5-FU as an anticolon cancer treatment to improve the chemotherapeutic effect of 5-FU. In this study, we assessed such combinational use in colon cancer and investigated whether melatonin could synergize the antitumor effect of 5-FU. We found that melatonin significantly enhanced the 5-FU-mediated inhibition of cell proliferation, colony formation, cell migration and invasion in colon cancer cells. We also found that melatonin synergized with 5-FU to promote the activation of the caspase/PARP-dependent apoptosis pathway and induce cell cycle arrest. Further mechanism study demonstrated that melatonin synergized the antitumor effect of 5-FU by targeting the PI3K/AKT and NF-κB/inducible nitric oxide synthase (iNOS) signaling. Melatonin in combination with 5-FU markedly suppressed the phosphorylation of PI3K, AKT, IKKα, IκBα, and p65 proteins, promoted the translocation of NF-κB p50/p65 from the nuclei to cytoplasm, abrogated their binding to the iNOS promoter, and thereby enhanced the inhibition of iNOS signaling. In addition, pretreatment with a PI3K- or iNOS-specific inhibitor synergized the antitumor effects of 5-FU and melatonin. Finally, we verified in a xenograft mouse model that melatonin and 5-FU exerted synergistic antitumor effect by inhibiting the AKT and iNOS signaling pathways. Collectively, our study demonstrated that melatonin synergized the chemotherapeutic effect of 5-FU in colon cancer through simultaneous suppression of multiple signaling pathways.

AND

Antitumour activity of melatonin in a mouse model of human prostate cancer: relationship with hypoxia signalling.

2014 Aug;57(1):43-52. doi: 10.1111/jpi.12142. Epub 2014 May 20.

Abstract

Melatonin is known to exert antitumour activity in several types of human cancers, but the underlying mechanisms as well as the efficacy of different doses of melatonin are not well defined. Here, we test the hypothesis whether melatonin in the nanomolar range is effective in exerting antitumour activity in vivo and examine the correlation with the hypoxia signalling mechanism, which may be a major molecular mechanism by which melatonin antagonizes cancer. To test this hypothesis, LNCaP human prostate cancer cells were xenografted into seven-wk-old Foxn1nu/nu male mice that were treated with melatonin (18 i.p. injections of 1 mg/kg in 41 days). Saline-treated mice served as control. We found that the melatonin levels in plasma and xenografted tissue were 4× and 60× higher, respectively, than in control samples. Melatonin tended to restore the redox imbalance by increasing expression of Nrf2. As part of the phenotypic response to these perturbations, xenograft microvessel density was less in melatonin-treated animals, indicative of lower angiogenesis, and the xenograft growth rate was slower (P < 0.0001). These changes were accompanied by a reduced expression of Ki67, elevated expression of HIF-1α and increased phosphorylation of Akt in melatonin than saline-treated mice. We conclude that the beneficial effect of melatonin in reducing cancer growth in vivo was evident at melatonin plasma levels as low as 4 nm and was associated with decreased angiogenesis. Higher HIF-1α expression in xenograft tissue indicates that the antitumour effect cannot be due to a postulated antihypoxic effect, but may stem from lower angiogenesis potential.

AND

Melatonin inhibits the proliferation of human osteosarcoma cell line MG-63.

2013 Aug;55(2):432-8. doi: 10.1016/j.bone.2013.02.021. Epub 2013 Mar 5.

Abstract

It seems established that the onset of osteosarcoma and the reduction in melatonin production run in parallel; this suggests that the decline in the cancer-inhibiting agent, melatonin, may contribute to the occurrence of osteosarcoma and that melatonin supplementation may have promise for preventing the development and progression of this condition. There is, however, no direct evidence regarding an antiproliferative effect of melatonin in osteosarcoma cells. In the current study, we examined whether melatonin inhibits the proliferation of human osteosarcoma cell line MG-63. MTT staining showed that at 4 mM-10 mM concentrations, melatonin significantly reduced the MG-63 cell proliferation in a dose-dependent and time-dependent manner. Flow cytometry documented that 4 mM melatonin significantly increased the fraction of cells in the G(0)/G(1) phase of the cell cycle, while simultaneously reducing the proportion in the S and G(2)/M phases. Western blot and real-time PCR analyses further confirmed that melatonin‘s inhibitory effect was possibly because of downregulation of cyclin D1 and CDK4, related to the G(1) phase, and of cyclin B1 and CDK1, related to the G(2)/M phase. There was no downregulation of cyclin E, CDK2, and cyclin A, which are related to G(1)/S transition and S phase. These findings provide evidence that melatonin may significantly inhibit human osteosarcoma cell proliferation in a dose-dependent and time-dependent manner and this inhibition involves the downregulation of cyclin D1, CDK4, cyclin B1 and CDK1.

AND

Beneficial actions of melatonin in the management of viral infections: a new use for this “molecular handyman”?

2012 Sep;22(5):323-38. doi: 10.1002/rmv.1714. Epub 2012 Apr 18.

Abstract

Melatonin (N-acetyl-5-methoxytryptamine) is a multifunctional signaling molecule that has a variety of important functions. Numerous clinical trials have examined the therapeutic usefulness of melatonin in different fields of medicine. Clinical trials have shown that melatonin is efficient in preventing cell damage under acute (sepsis, asphyxia in newborns) and chronic states (metabolic and neurodegenerative diseases, cancer, inflammation, aging). The beneficial effects of melatonin can be explained by its properties as a potent antioxidant and antioxidant enzyme inducer, a regulator of apoptosis and a stimulator of immune functions. These effects support the use of melatonin in viral infections, which are often associated with inflammatory injury and increases in oxidative stress. In fact, melatonin has been used recently to treat several viral infections, which are summarized in this review. The role of melatonin in infections is also discussed herein.

AND

Melatonin: action as antioxidant and potential applications in human disease and aging.

2010 Nov 28;278(1):55-67. doi: 10.1016/j.tox.2010.04.008. Epub 2010 Apr 24.

Abstract

This review aims at describing the beneficial properties of melatonin related to its antioxidant effects. Oxidative stress, i.e., an imbalance between the production of reactive oxygen species and antioxidant defences, is involved in several pathological conditions such as cardiovascular or neurological disease, and in aging. Therefore, research for antioxidants has developed. However, classical antioxidants often failed to exhibit beneficial effects, especially in metabolic diseases. Melatonin has been shown as a specific antioxidant due to its amphiphilic feature that allows it to cross physiological barriers, thereby reducing oxidative damage in both lipid and aqueous cell environments. Studies on the antioxidant action of melatonin are reported, with a special mention to water gamma radiolysis as a method to produce oxygen-derived free radicals, and on structure-activity relationships of melatonin derivatives. Mass spectrometry-based techniques have been developed to identify melatonin oxidation products. Besides its ability to scavenge several radical species, melatonin regulates the activity of antioxidant enzymes (indirect antioxidant properties). Efficient detection methods confirmed the presence of melatonin in several plant products. Therapeutic potential of melatonin relies either on increasing melatonindietary intake or on supplementation with supraphysiological dosages. Clinical trials showed that melatonin could be efficient in preventing cell damage, as well under acute (sepsis, asphyxia in newborns) as under chronic (metabolic and neurodegenerative diseases, cancer, inflammation, aging). Its global action on oxidative stress, together with its rhythmicity that plays a role in several metabolic functions, lead melatonin to be of great interest for future clinical research in order to improve public health.

NEXT STEP:  get your bulk melatonin HERE and add it to your salad dressing or smoothie or brush your teeth with it and enhance the health of your gums and jaw bones.

AND

Melatonin levels in periodontal health and disease.

2013 Jun;48(3):315-21. doi: 10.1111/jre.12010. Epub 2012 Oct 3.

Abstract

BACKGROUND AND OBJECTIVE:

The aim of this study was to measure melatonin levels in the gingival crevicular fluid and saliva of subjects with healthy periodontal tissues, plaque-induced gingival inflammation, chronic periodontitis and aggressive periodontitis.

MATERIAL AND METHODS:

A total of 70 subjects were examined and assigned to four groups: healthy periodontium (10 subjects); plaque-induced gingival inflammation (20 subjects); chronic periodontitis (20 subjects); and aggressive periodontitis (20 subjects). Gingival crevicular fluid and saliva samples were collected from each subject and analyzed using ELISAs.

RESULTS:

The melatonin levels in both gingival crevicular fluid and saliva were lower in patients with chronic periodontitis (10.4 and 12.8 pg/mL, respectively) and aggressive periodontitis (8.4 and 8.8 pg/mL, respectively) than in patients with gingivitis (13.9 and 17.6 pg/mL, respectively) and in healthy subjects (16.6 and 22.9 pg/mL, respectively). The mean melatonin levels in both gingival crevicular fluid and saliva were statistically significantly higher in healthy patients compared with patients with chronic periodontitis and aggressive periodontitis; however, there was no significant difference in the plaque-induced gingival inflammation between the study groups.

CONCLUSIONS:

The melatonin levels in gingival crevicular fluid and saliva are decreased in diseased periodontal tissues, especially periodontitis. The melatonin level was lowest in the aggressive periodontitis group.

Post Comment