Some seeds are anti-cancer

Dr. Weeks’ Comment: “Eat the Seeds” because  1) seeds are the source of life and accordingly, they are the most nutrient dense food on earth; 2) seeds offer myriad anti-inflammatory and anti- cancer properties  3) seeds are jam packed with DNA and RNA which your body can use for genetic  “spare parts”  and 4) seeds offer unadulterated omega 6 fatty acids which can replenish and detoxify you by kicking out rancid oils which are suffocating your cellular membranes.  “Good oil in, bad oil out.”   But what was they about anti-cancer?   – Read below and “eat the (whole, organic, non-GMO)  seeds” .

“…TQ’s molecular mechanism of action and its ability to induce apoptosis and inhibit tumor growth in preclinical models. TQ has anti-inflammatory effects, and it inhibits tumor cell proliferation through modulation of apoptosis signaling, inhibition of angiogenesis, and cell cycle arrest…”

Int J Biochem Cell Biol. 2006;38(8):1249-53. Epub 2005 Nov 8.

Thymoquinone: a promising anti-cancer drug from natural sources.

Abstract

There has been growing interest in naturally occurring compounds with anti-cancer potential. Black seed is one of the most extensively studied plants. This annual herb grows in countries bordering the Mediterranean Sea and India. Thymoquinone (TQ) is the bioactive constituent of the volatile oil of black seed. It has been shown to exert anti-neoplastic and anti-inflammatory effects. The molecular pathways of TQ action are not clear. Nevertheless, TQ is known to induce apoptosis by p53-dependent and p53-independent pathways in cancer cell lines. Growth inhibition is associated with induction of cell cycle arrest. TQ also acts on the immune system by modulating the levels of inflammatory mediators. To date, the chemotherapeutic potential of TQ in the clinic has not been tested, but numerous studies have shown its promising anti-cancer effects in animal models. The combination of TQ with clinically used anti-cancer drugs has led to improvements in their therapeutic index and prevents non-tumor tissues from sustaining chemotherapy-induced damage.

 

Nutr Cancer. 2010;62(7):938-46. doi: 10.1080/01635581.2010.509832.

Review on molecular and therapeutic potential of thymoquinone in cancer.

Abstract

Thymoquinone (TQ) is the predominant bioactive constituent present in black seed oil (Nigella sativa) and has been tested for its efficacy against cancer. Here, we summarize the literature about TQ’s molecular mechanism of action and its ability to induce apoptosis and inhibit tumor growth in preclinical models. TQ has anti-inflammatory effects, and it inhibits tumor cell proliferation through modulation of apoptosis signaling, inhibition of angiogenesis, and cell cycle arrest. Chemosensitization by TQ is mostly limited to in vitro studies, and it has potential in therapeutic strategy for cancer. The results favor efficacy and enhancement of therapeutic benefit against tumor cells resistant to therapy based on cellular targets that are molecular determinants for cancer cell survival and progression. There have been attempts to synthesize novel analogs of TQ directed toward superior effects in killing tumor cells with more enhanced chemosensitizing potential than parent TQ compound. Based on published reports, we believe that further in-depth studies are warranted including investigation of its bioavailability and Phase I toxicity profiling in human subjects. The results from such studies will be instrumental in advancing this field in support of initiating clinical trials for testing the effects of this ancient agent in cancer therapy.

 

Anticancer Drugs. 2004 Apr;15(4):389-99.

Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes.

Abstract

Thymoquinone (TQ), the most abundant constituent in black seed, was shown to possess potent chemopreventive activities against DMBA-initiated TPA-promoted skin tumors in mice. Despite the potential interest in TQ as a skin antineoplastic agent, its mechanism of action has not been examined yet. Using primary mouse keratinocytes, papilloma (SP-1) and spindle (I7) carcinoma cells, we studied the cellular and molecular events involved in TQ’s antineoplastic activity. We show that non-cytotoxic concentrations of TQ reduce the proliferation of neoplastic keratinocytes by 50%. The sensitivity of cells to TQ treatment appears to be stage dependent such that papilloma cells are twice as sensitive to the growth inhibitory effects of TQ as the spindle cancer cells. TQ treatment of SP-1 cells induced G0/G1 cell-cycle arrest, which correlated with sharp increases in the expression of the cyclin-dependent kinase inhibitor p16 and a decrease in cyclin D1 protein expression. TQ-induced growth inhibition in I7 cells by inducing G2/M cell-cycle arrest, which was associated with an increase in the expression of the tumor suppressor protein p53 and a decrease in cyclin B1 protein. At longer times of incubation, TQ induced apoptosis in both cell lines by remarkably increasing the ratio of Bax/Bcl-2 protein expression and decreasing Bcl-xL protein. The apoptotic effects of TQ were more pronounced in SP-1 than in I7 cells. Collectively, these findings support a potential role for TQ as a chemopreventive agent, particularly at the early stages of skin tumorigenesis.

 

Int J Oncol. 2004 Oct;25(4):857-66.

Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism.

Abstract

For centuries, the black seed (Nigella sativa) herb and oil have been used in Asia, Middle East and Africa to promote health and fight disease. Thymoquinone (TQ), the most abundant constituent present in black seed, is a promising dietary chemopreventive agent. We investigated the effects of thymoquinone (TQ) against HCT-116 human colon cancer cells and attempted to identify its potential molecular mechanisms of action. We report that TQ inhibits the growth of colon cancer cells which was correlated with G1 phase arrest of the cell cycle. Furthermore, TUNEL staining and flow cytometry analysis indicate that TQ triggers apoptosis in a dose- and time-dependent manner. Apoptosis induction by TQ was associated with a 2.5-4.5-fold increase in mRNA expression of p53 and the downstream p53 target gene, p21WAF1. Simultaneously, we found a marked increase in p53 and p21WAF1 protein levels but a significant inhibition of anti-apoptotic Bcl-2 protein. Co-incubation with pifithrin-alpha (PFT-alpha), a specific inhibitor of p53, restored Bcl-2, p53 and p21WAF1 levels to the untreated control and suppressed TQ-induced cell cycle arrest and apoptosis. p53-null HCT-116 cells were less sensitive to TQ-induced growth arrest and apoptosis. These results indicate that TQ is antineoplastic and pro-apoptotic against colon cancer cell line HCT116. The apoptotic effects of TQ are modulated by Bcl-2 protein and are linked to and dependent on p53. Our data support the potential for using the agent TQ for the treatment of colon cancer.

 

Cancer Biol Ther. 2007 Feb;6(2):160-9. Epub 2007 Feb 5.

Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells.

Abstract

We have recently shown that thymoquinone (TQ) is an antineoplastic drug that induces p53-dependent apoptosis in human colon cancer cells. This study evaluated the antiproliferative and pro-apoptotic effects of TQ in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM). Cell viability was reduced more selectively in MG63 tumor cells than in normal human osteoblasts. Flow cytometric analysis showed that TQ induced a much greater increase in the PreG(1) (apoptotic) cell population, but no cell cycle arrest in MG63. G(2)/M arrest in MNNG/HOS cells was associated with p21(WAF1) upregulation. Using three DNA damage assays, TQ was confirmed to result in a significantly greater extent of apoptosis in p53 null MG63 cells. Although the Bax/Bcl-2 ratios were not differentially modulated in both cell lines, the mitochondrial pathway appeared to be involved in TQ-induced apoptosis in MG63 by showing the cleavage of caspases-9 and -3. Oxidative stress and mitochondrial O(2)(*-) generation in isolated rat mitochondria were enhanced by TQ as measured by the dose-dependent reduction in aconitase enzyme activity and Amplex Red oxidation respectively. TQ-induced oxidative damage, reflected by an increase in gamma-H2AX foci and increased protein expression levels of gamma-H2AX and the DNA repair enzyme, NBS1, was more pronounced in MNNG/HOS than in MG63. We suggest that the resistance of MNNG/HOS cells to drug-induced apoptosis is caused by the up-regulation of p21(WAF1) by the mutant p53 (transcriptional activity was shown by p53 siRNA treatment) which induces cell cycle arrest and allows to repair DNA damage. Collectively, these findings show that TQ induces p53-independent apoptosis in human osteosarcoma cells. As the loss of p53 function is frequently observed in osteosarcoma patients, our data suggest the potential clinical usefulness of TQ for the treatment of these malignancies.

 

 

Leave a Comment

Your email address will not be published. Required fields are marked *