Dr. Weeks’ Comment:Anti-inflammation remains the key to addressing cancer STEM cells – even in oncogene therapy. Crushed whole raw seeds with anti-inflammatory properties like black cumin and black raspberry and Chardonnay grape are the essential – eat the seeds!
“… The NR2F6 target gene repertoire thus identifies a general anti-inflammatory gatekeeper role for this orphan receptor…”
The Nuclear Orphan Receptor NR2F6 Is a Central Checkpoint for Cancer Immune Surveillance.
Abstract
Nuclear receptor subfamily 2, group F, member 6 (NR2F6) is an orphan member of the nuclear receptor superfamily. Here, we show that genetic ablation of Nr2f6 significantly improves survival in the murine transgenic TRAMP prostate cancer model. Furthermore, Nr2f6-/- mice spontaneously reject implanted tumors and develop host-protective immunological memory against tumor rechallenge. This is paralleled by increased frequencies of both CD4+ and CD8+ T cells and higher expression levels of interleukin 2 and interferon γ at the tumor site. Mechanistically, CD4+ and CD8+ T cell-intrinsic NR2F6 acts as a direct repressor of the NFAT/AP-1 complex on both the interleukin 2 and the interferon γ cytokine promoters, attenuating their transcriptional thresholds. Adoptive transfer of Nr2f6-deficient T cells into tumor-bearing immunocompetent mice is sufficient to delay tumor outgrowth. Altogether, this defines NR2F6 as an intracellular immune checkpoint in effector T cells, governing the amplitude of anti-cancer immunity.
Orphan nuclear receptor NR2F6 acts as an essential gatekeeper of Th17 CD4+ T cell effector functions.
Abstract
Members of the evolutionarily conserved family of the chicken ovalbumin upstream promoter transcription factor NR2F/COUP-TF orphan receptors have been implicated in lymphocyte biology, ranging from activation to differentiation and elicitation of immune effector functions. In particular, a CD4+ T cell intrinsic and non-redundant function of NR2F6 as a potent and selective repressor of the transcription of the pro-inflammatory cytokines interleukin (Il) 2, interferon y (ifng) and consequently of T helper (Th)17 CD4+ T cell-mediated autoimmune disorders has been discovered. NR2F6 serves as an antigen receptor signaling threshold-regulated barrier against autoimmunity where NR2F6 is part of a negative feedback loop that limits inflammatory tissue damage induced by weakly immunogenic antigens such as self-antigens. Under such low affinity antigen receptor stimulation, NR2F6 appears as a prototypical repressor that functions to “lock out” harmful Th17 lineage effector transcription. Mechanistically, only sustained high affinity antigen receptor-induced protein kinase C (PKC)-mediated phosphorylation has been shown to inactivate NR2F6, thereby displacing pre-bound NR2F6 from the DNA and, subsequently, allowing for robust NFAT/AP-1- and RORγt-mediated cytokine transcription. The NR2F6 target gene repertoire thus identifies a general anti-inflammatory gatekeeper role for this orphan receptor. Investigating these signaling pathway(s) will enable a greater knowledge of the genetic, immune, and environmental mechanisms that lead to chronic inflammation and of certain autoimmune disorders in a given individual.