Dr. Weeks’ Comment: Question: What do cancers HATE? Answer: Oxygen.
(read about Nobel laureate Otto Warburg “All normal cells have an absolute requirement for oxygen, but cancer cells can live without oxygen – a rule without exception. “Deprive a cell 35% of its oxygen for 48 hours and it may become cancerous.”)
That is why exercise lowers cancer risk (it oxygenates the blood) and why deep yoga belly breathing is beneficial not just for lowering stress but also for lowering cancer risk. Hyperbaric oxygen chambers which exist at most major hospitals are currently underutilized in hospital settings. I know of none which are available for cancer treatments. That is sad.
Here is an article which clarifies how cancers can be suffocated and helps us appreciate the role of oxygenating the blood.
Suffocating Tumors Could Lead to New Cancer Drugs
July 25, 2013 ”” Scientists have discovered a new molecule that prevents cancer cells from responding and surviving when starved of oxygen and which could be developed into new treatments for the disease, according to new research published in theJournal of the American Chemical Society on July 26.Cancer Research UK scientists at the University of Southampton found that this molecule targets the master switch — HIF-1 — that cancer cells use to adapt to low oxygen levels, a common feature in the disease.
The researchers uncovered a way to stop cancer cells using this switch through an approach called ‘synthetic biology’. By testing 3.2 million potential compounds, made by specially engineered bacteria, they were able to find a molecule that stopped HIF-1 from working.
All cells need a blood supply to provide them with the oxygen and nutrients they require to survive. Cancer tumours grow rapidly and as the tumour gets bigger it outstrips the supply of oxygen and nutrients that the surrounding blood vessels can deliver.
But, to cope with this low-oxygen environment, HIF-1 acts as a master switch that turns on hundreds of genes, allowing cancer cells to survive. HIF-1 triggers the formation of new blood vessels around tumours, causing more oxygen and nutrients to be delivered to the starving tumour, which in turn allows it to keep growing.
Dr Ali Tavassoli, a Cancer Research UK scientist whose team discovered and developed the compound at the University of Southampton, said: “We’ve found a way to target the steps that cancer cells take to survive and we hope that our research will one day lead to effective drugs that can stop cancers adapting to a low oxygen environment, stopping their growth. The next step is to further develop this molecule to create an effective treatment.”
Dr Julie Sharp, senior science information manager at Cancer Research UK, said: “Finding ways to disrupt the tools that cancer cells use to adapt and grow when starved of oxygen has been a hot topic in cancer research, but finding drugs that do this effectively has proved elusive.
“For the first time our scientists have found a way to block a master switch controlling cells response to low levels of oxygen — an important step towards creating drugs that could halt cancer in its tracks.”
REFERENCE: Elena Miranda, Ida K. Nordgren, Abigail L. Male, Charlotte E. Lawrence, Franciane Hoakwie, Francesco Cuda, William Court, Keith R. Fox, Paul A. Townsend, Graham K. Packham, Suzanne A. Eccles, Ali Tavassoli. A Cyclic Peptide Inhibitor of HIF-1 Heterodimerization That Inhibits Hypoxia Signaling in Cancer Cells. Journal of the American Chemical Society, 2013; 135 (28): 10418 DOI:10.1021/ja402993u