Anticancer Res. 2010 Feb;30(2):319-25.
Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R.
Patel BB, Gupta D, Elliott AA, Sengupta V, Yu Y, Majumdar AP.
Department of Veterans Affairs Medical Center, Karmanos Cancer Center, Wayne State University, Detroit, MI 48201, USA.
Abstract
Curcumin (diferuloylmethane), which has no discernible toxicity, inhibits initiation, promotion and progression of carcinogenesis. 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) remains the backbone of colorectal cancer chemotherapeutics, but produces an incomplete response resulting in survival of cells (chemo-surviving cells) that may lead to cancer recurrence. The present investigation was, therefore, undertaken to examine whether addition of curcumin to FOLFOX is a superior therapeutic strategy for chemo-surviving cells. Forty-eight-hour treatment of colon cancer HCT-116 and HT-29 cells with FOLFOX resulted in 60-70% survival, accompanied by a marked activation of insulin like growth factor-1 receptor (IGF-1R) and minor to moderate increase in epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2) as well as v-akt murine thymoma viral oncogene homolog 1 (AKT), cyclooxygenase-2 (COX-2) and cyclin-D1. However, inclusion of curcumin to continued FOLFOX treatment for another 48 h greatly reduced the survival of these cells, accompanied by a concomitant reduction in activation of EGFR, HER-2, IGF-1R and AKT, as well as expression of COX-2 and cyclin-D1. More importantly, EGFR tyrosine kinase inhibitor gefitinib or attenuation of IGF-1R expression by the corresponding si-RNA caused a 30-60% growth inhibition of chemo-surviving HCT-116 cells. However, curcumin alone was found to be more effective than both gefitinib and IGF-1R si-RNA mediated growth inhibition of chemo-surviving HCT-116 cells and addition of FOLFOX to curcumin did not increase the growth inhibitory effect of curcumin. Our data suggest that inclusion of curcumin in conventional chemotherapeutic regimens could be an effective strategy to prevent the emergence of chemoresistant colon cancer cells.
AND
`
`
Int J Cancer. 2008 Jan 15;122(2):267-73.
Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R.
Patel BB, Sengupta R, Qazi S, Vachhani H, Yu Y, Rishi AK, Majumdar AP.
John D. Dingell VA Medical Center, Wayne State University, Detroit, MI 48201, USA.
Abstract
Curcumin (diferuloylmethane), which has been shown to inhibit growth of transformed cells, has no discernible toxicity and achieves high levels in colonic mucosa. 5-fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) remains the backbone of colorectal cancer chemotherapeutics, but with limited success. The present investigation was, therefore, undertaken to examine whether curcumin in combination with conventional chemotherapeutic agent(s)/regimen will be a superior therapeutic strategy for colorectal cancer. Indeed, results of our in vitro studies demonstrated that curcumin together with FOLFOX produced a significantly greater inhibition (p < 0.01) of growth and stimulated apoptosis (p < 0.001) of colon cancer HCT-116 and HT-29 cells than that caused by curcumin, 5-FU, curcumin + 5-FU or FOLFOX. These changes were associated with decreased expression and activation (tyrosine phosphorylation) of EGFR, HER-2, HER-3 (72-100%) and IGF-1R (67%) as well as their downstream effectors such as Akt and cycloxygenase-2 (51-97%). Furthermore, while these agents produced a 2-3-fold increase in the expression of IGF-binding protein-3 (IGFBP-3), curcumin together with FOLFOX caused a 5-fold increase in the same, when compared to controls. This in turn led to increased sequestration of IGF by IGFBP-3 rendering IGF-1 unavailable for binding to and activation of IGF-1R. We conclude that the superior effects of the combination therapy of curcumin and FOLFOX are due to attenuation of EGFRs and IGF-1R signaling pathways. We also suggest that inclusion of curcumin to the conventional chemotherapeutic agent(s)/regimen could be an effective therapeutic strategy for colorectal cancer.
Copyright 2007 Wiley-Liss, Inc.