Many Cancers, One Remedy

Dr. Weeks’ Comment:  Cancer strikes fear in people’s hearts simply because it is misunderstood and the cancer industry profits from fear. But look how simple it is to stack the cards against cancer:  “eat the seeds”.



Arch Med Sci. 2015 Mar 16;11(1):220-9. doi: 10.5114/aoms.2013.33329. Epub 2013 Feb 28.

Evaluation of the protective effect of Nigella sativa extract and its primary active component thymoquinone against DMBA-induced breast cancer in female rats.



The historical use of black cumin seed (Nigella sativa) dates back centuries, being embedded in Arabian culture and having a long history of unsurpassed medicinal value with versatility to treat a wide range of ailments. Thymoquinone (TQ) is now known to be the primary active constituent ofblack cumin seed oil (BCS oil) responsible for its medicinal effects and also showing promise for treatment of cancer.


In the current study, we have studied the effects of TQ and BCS oil on tumor markers (MDA, LDH, ALP and AST), histopathological alterations and the regulation of several genes (Brca1, Brca2, Id-1 and P53 mutation) related to breast cancer in female rats induced by 7,12-dimethylbenz[a]anthracene (DMBA) treatment. Rats received a single dose (65 mg/kg b.w.) of DMBA via an intragastric tube to induce breast cancer. Animals that received DMBA were treated orally with 1, 5, 10 mg/kg of TQ or BCS oil via an intragastric tube three times per week for 4 months.


We found that TQ and then BCS reduced the rate of tumor markers (levels of MDA and LDH as well as ALP and AST activities), inhibited the histopathological alterations and decreased the expression of the Brca1, Brca2, Id-1 and P53 mutations in mammary tissues of female rats induced by DMBA treatment.


The results suggest that TQ and BCS oil exert a protective effect against breast carcinogens. The antioxidant property of TQ and BCS oil is mediated by their actions and investigating other underlying mechanisms merits further studies.



Iran J Basic Med Sci. 2014 Dec;17(12):967-79.

Cardio-protective and anti-cancer therapeutic potential of Nigella sativa.


Nigella sativa is the miraculous plant having a lot of nutritional and medicinal benefits, and attracts large number of nutrition and pharmacological researchers. N. sativa seed composition shows that it is the blessing of nature and it contains and many bioactive compounds like thymoquinone, α-hederin, alkaloids, flavonoids, antioxidants, fatty acids many other compounds that have positive effects on curing of different diseases. Several medicinal properties of N. sativa like its anti-cancer, anti-inflammatory, anti-diabetic, antioxidant activities and many others are well acknowledged. However, this article focuses on activity of N.sativa against cardiovascular diseases and cancer. For gathering required data the authors went through vast number of articles using search engines like Science direct, ELSEVIER, Pub Med, Willey on Line Library and Google scholar and the findings were classified on the basis of relevance of the topic and were reviewed in the article. N. sativa is rich source of different biologically active compounds and is found effective in controlling number of cardiovascular diseases and various cancers both in vivo and in vitro studies.

Mutat Res. 2014 Oct;768:22-34. doi: 10.1016/j.mrfmmm.2014.05.003. Epub 2014 May 27.

Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thymoquinone.


The bioactive natural products (plant secondary metabolites) are widely known to possess therapeutic value for the prevention and treatment of various chronic diseases including cancer. Thymoquinone (2-methyl-5-isopropyl-1,4-benzoquinone; TQ), a monoterpene present in black cumin seeds, exhibits pleiotropic pharmacological activities including antioxidant, anti-inflammatory, antidiabetic and antitumor effects. TQ inhibits experimental carcinogenesis in a wide range of animal models and has been shown to arrest the growth of various cancer cells in culture as well as xenograft tumors in vivo. The mechanistic basis of anticancer effects of TQ includes the inhibition of carcinogen metabolizing enzyme activity and oxidative damage of cellular macromolecules, attenuation of inflammation, induction of cell cycle arrest and apoptosis in tumor cells, blockade of tumor angiogenesis, and suppression of migration, invasion and metastasis of cancer cells. TQ shows synergistic and/or potentiating anticancer effects when combined with clinically used chemotherapeutic agents. At the molecular level, TQ targets various components of intracellular signaling pathways, particularly a variety of upstream kinases and transcription factors, which are aberrantly activated during the course of tumorigenesis.


Pharmacol Res. 2015 Mar 28. pii: S1043-6618(15)00050-X. doi: 10.1016/j.phrs.2015.03.011. [Epub ahead of print]

Thymoquinone and its therapeutic potentials.


Herbal medicine has attracted great attention in the recent years and is increasingly used as alternatives to chemical drugs. Several lines of evidence support the positive impact of medicinal plants in the prevention and cure of a wide range of diseases. Thymoquinone (TQ) is the most abundant constituent of the volatile oil of Nigella sativa seeds and most properties of N. sativa are mainly attributed to TQ. A number of pharmacological actions of TQ have been investigated including anti-oxidant, anti-inflammatory, immunomodulatory, anti-histaminic, anti-microbial and anti-tumor effects. It has also gastroprotective, hepatoprotective, nephroprotective and neuroprotective activities. In addition, positive effects of TQ in cardiovascular disorders, diabetes, reproductive disorders and respiratory ailments, as well as in the treatment of bone complications as well as fibrosis have been shown. In addition, a large body of data shows that TQ has very low adverse effects and no serious toxicity. More recently, a great deal of attention has been given to this dietary phytochemical with an increasing interest to investigate it in pre-clinical and clinical researches for assessing its health benefits. Here we report on and analyze numerous properties of the active ingredient of N. sativa seeds, TQ, in the context of its therapeutic potentials for a wide range of illnesses. We also summarize the drug’s possible mechanisms of action. The evidence reported sugests that TQ should be developed as a novel drug in clinical trials.


Biomaterials. 2015 May;51:91-107. doi: 10.1016/j.biomaterials.2015.01.007. Epub 2015 Feb 17.

PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a.


Thymoquinone (TQ), a major active constituent of black seeds of Nigella sativa, has potential medical applications including spectrum of therapeutic properties against different cancers. However, little is known about their effect on breast cancer cell migration, which is the cause of over 90% of deaths worldwide. Herein, we have synthesized TQ-encapsulated nanoparticles using biodegradable, hydrophilic polymers like polyvinylpyrrolidone (PVP) and polyethyleneglycol (PEG) to overcome TQ’s poor aqueous solubility, thermal and light sensitivity as well as consequently, minimal systemic bioavailability which can greatly improve the cancer treatment efficiency. Sizes of synthesized TQ-Nps were found to be below 50 nm and they were mostly spherical in shape with smooth surface texture. Estimation of the zeta potential also revealed that all the three TQ-Nps were negatively charged which also facilitated their cellular uptake. In the present investigation, we provide direct evidence that TQ-Nps showed more efficiency in killing cancercells as well as proved to be less toxic to normal cells at a significantly lower dose than TQ. Interestingly, evaluation of the anti-migratory effect of the TQ-Nps, revealed that PEG4000-TQ-Nps showed much potent anti-migratory properties than the other types. Further studies indicated that PEG4000-TQ-Nps could significantly increase the expression of miR-34a through p53. Moreover, NPs mediated miR-34a up-regulation directly down-regulated Rac1 expression followed by actin depolymerisation thereby disrupting the actin cytoskeleton which leads to significant reduction in the lamellipodia and filopodia formation on cell surfaces thus retarding cell migration. Considering the biodegradability, non-toxicity and effectivity of PEG4000-TQ-Nps against cancer cell migration, TQ-Nps may provide new insights into specific therapeutic approach for cancer treatment.


J BUON. 2014 Oct-Dec;19(4):1055-61.

Enhanced cytotoxicity and apoptosis by thymoquinone in combination with zoledronic acid in hormone- and drug-resistant prostate cancer cell lines.



Thymoquinone (TQ), an active ingredient of black seed oil (Nigella Sativa), has been shown to possess cytotoxic activity against a variety of cancer cell lines. Our purpose was to investigate if the cytotoxic and apoptotic effect of zoledronic acid (ZA) can be enhanced by the addition of the TQ in hormone- and drug-refractory prostate cancer cells PC-3 and DU-145.


XTT cell proliferation assay was used to assess cytotoxicity; DNA fragmentation and caspase 3/7 activity were also measured.


The combination of TQ and ZA resulted in a significant synergistic cytotoxic activity and DNA fragmentation when compared to any single agent alone, in a dose- and time-dependent manner. In addition, TQ and ZA combination increased the caspase 3/7 activity in PC-3 cell line, while this activity could not be demonstrated in DU-145 cell line.


TQ and ZA had minimal hematological and non-hematological toxicity profile compared to cytotoxic agents. So, this combination may be an alternative approach for patients who are unable to be treated by conventional treatments because of poor performance status.

Asian Pac J Cancer Prev. 2014;15(22):9655-60.

Roles of p53 and caspases in induction of apoptosis in MCF- 7 breast cancercells treated with a methanolic extract of Nigella sativa seeds.



Nigella Sativa (NS) is an herb from the Ranunculaceae family that exhibits numerous medicinal properties and has been used as important constituent of many complementary and alternative medicines (CAMs). The ability of NS to kill cancer cells such as PC3, HeLa and hepatoma cells is well established. However, our understanding of the mode of death caused by NS remains nebulous. The objective of this study was to gain further insight into the mode and mechanism of death caused by NS in breast cancer MCF-7 cells.


Human breast cancer cells (MCF-7) were treated with a methanolic extract of NS, and a dose- and time-dependent study was performed. The IC50 was calculated using a Cell Titer Blue® viability assay assay, and evidence for DNA fragmentation was obtained by fluorescence microscopy TUNEL assay. Gene expression was also profiled for a number of apoptosis-related genes (Caspase-3, -8, -9 and p53 genes) through qPCR.


The IC50 of MCF-7 cells was 62.8 μL/mL. When MCF-7 cells were exposed to 50 μL/mL and 100 μL/mL NS for 24 h, 48 h and 72 h, microscopic examination (TUNEL assay) revealed a dose- and time-dependent increase in apoptosis. Similarly, the expression of the Caspase-3, -8, -9 and p53 genes increased significantly according to the dose and time.


NS induced apoptosis in MCF-7 cells through both the p53 and caspase pathways. NS could potentially represent an alternative source of medicine for breast cancer therapy.

Chin J Physiol. 2014 Oct 31;57(5):249-55. doi: 10.4077/CJP.2014.BAB190.

Apoptotic activities of thymoquinone, an active ingredient of black seed (Nigella sativa), in cervical cancer cell lines.


Thymoquinone (TQ) is the main constituent of black seed (Nigella sativa, spp) essential oil which shows promising in vitro and in vivo anti-neoplastic activities in different tumor cell lines. However, to date there are only a few reports regarding the apoptotic effects of TQ on cervical cancer cells. Here, we report that TQ stimulated distinct apoptotic pathways in two human cervical cell lines, Siha and C33A. TQ markedly induced apoptosis as demonstrated by cell cycle analysis in both cell lines. Moreover, quantitative PCR revealed that TQ induced apoptosis in Siha cells through p53-dependent pathway as shown by elevated level of p53-mediated apoptosis target genes, whereas apoptosis in C33A cells was mainly associated with the activation of caspase-3. These results support previous findings on TQ as a potential therapeutic agent for human cervical cancer.

Tumour Biol. 2015 Jan;36(1):259-69. doi: 10.1007/s13277-014-2628-z. Epub 2014 Sep 20.

Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lungcancer cells via ERK pathway.


Thymoquinone (TQ) is the primary bioactive component of Nigella sativa Linn seed oil and used as anti-inflammatory, anti-oxidant, and anti-neoplastic agent. Previous studies have shown that TQ exhibits inhibitory effects on multiple cancers. However, the detailed antineoplastic effects and its molecular mechanisms of TQ on lung cancer are not entirely elucidated yet. In the present study, we aimed to investigate the effects of TQ on cell proliferation, migration, and invasion as well as its underlying anti-metastatic mechanisms in A549 cells. Lung cancer cell line A549 cells were treated with different concentration of TQ for different period of time, and the growth-inhibitory effects of TQ was measured by MTT and cell count assays; cell cycle was determined by flow cytometry; wound healing and transwell assays were used to assess the cell migration and invasion activities; Western blot and real-time quantitative RT-PCR were used to determine the expression of proliferation and invasion associated genes as well as MAPKs pathway molecules; gelatinase activity was estimated using gelatin zymography assay. The results show that TQ played a role in inhibiting the proliferation, migration, and invasion of A549 lungcancer cells, it also inhibited the expression level of PCNA, cyclin D1, MMP2, and MMP9 mRNA and protein in a dose- and time-dependent manner especially at 10, 20, 40 Î¼mol/L concentrations. The cell cycle inhibitor P16 expression and the gelatinase activities of MMP2 and MMP9 were also inhibited by TQ dramatically. TQ reduced phosphorylation of ERK1/2; however, the proliferation and invasion inhibitory effects of TQ on A549 cells were neutralized by ERK1/2 inhibitor PD98059. In conclusion, our study confirmed that TQ could inhibit A549 cell proliferation, migration, and invasion through ERK1/2 pathway, as proposed the therapeutic potential of TQ as an anti-metastatic agent in human lung cancer treatment.

Evid Based Complement Alternat Med. 2014;2014:724658. doi: 10.1155/2014/724658. Epub 2014 May 18.

Therapeutic Implications of Black Seed and Its Constituent Thymoquinone in the Prevention of Cancer through Inactivation and Activation of Molecular Pathways.


The cancer is probably the most dreaded disease in both men and women and also major health problem worldwide. Despite its high prevalence, the exact molecular mechanisms of the development and progression are not fully understood. The current chemotherapy/radiotherapy regime used to treat cancershows adverse side effect and may alter gene functions. Natural products are generally safe, effective, and less expensive substitutes of anticancer chemotherapeutics. Based on previous studies of their potential therapeutic uses, Nigella sativa and its constituents may be proved as good therapeutic options in the prevention of cancerBlack seeds are used as staple food in the Middle Eastern Countries for thousands of years and also in the treatment of diseases. Earlier studies have shown that N. sativa and its constituent thymoquinone (TQ) have important roles in the prevention and treatment of cancer by modulating cell signaling pathways. In this review, we summarize the role of N. sativa and its constituents TQ in the prevention of cancer through the activation or inactivation of molecular cell signaling pathways.



Can J Physiol Pharmacol. 2014 Aug;92(8):640-4. doi: 10.1139/cjpp-2014-0148. Epub 2014 May 26.

Protective role of thymoquinone against liver damage induced by tamoxifen in female rats.


One of the major reasons for terminating a clinical trial is the liver toxicity induced by chemotherapy. Tamoxifen (TAM) is an anti-estrogen used in the treatment and prevention of hormone-dependent breastcancer. Tamoxifen therapy may cause hepatic injury. The seeds of Nigella sativa, which contain the active ingredient thymoquinone (TQ), have been used in folk medicine for diverse ailments. TQ is reported to possess anticancer and hepatoprotective effects. In this study, the protective effects of TQ against TAM-induced hepatotoxicity in female rats were evaluated. Four groups of rats were used: control; TAM; TQ; TAM+TQ. TAM (45 mg·(kg body mass)(-1)·day(-1), by intraperitoneal injection (i.p.), for 10 consecutive days) resulted in elevated serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, total bilirubin, and gamma glutamyl transferase, as well as depletion of reduced glutathione in the liver and accumulation of lipid peroxides. Also, TAM treatment inhibited the hepatic activity of superoxide dismutase. Further, it raised the levels of tumor necrosis factor alpha in the liver and induced histopathological changes. Pretreatment with TQ (50 mg·(kg body mass)(-1)·day(-1); orally, for 20 consecutive days, starting 10 days before TAM injection) significantly prevented the elevation in serum activity of the assessed enzymes. TQ significantly inhibited TAM-induced hepatic GSH depletion and LPO accumulation. Consistently, TQ normalized the activity of SOD, inhibited the rise in TNF-α and ameliorated the histopathological changes. In conclusion, TQ protects against TAM-induced hepatotoxicity.

Oncol Rep. 2014 Aug;32(2):821-8. doi: 10.3892/or.2014.3223. Epub 2014 May 29.

Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src”‘mediated phosphorylation of EGF receptor tyrosine kinase.


Thymoquinone (TQ), a compound isolated from black seed oil (Nigella sativa), has been reported to possess anti-inflammatory and anticancer activities. However, the molecular mechanisms underlying the anticancer effects of TQ remain poorly understood. In the present study, we found that TQ significantly reduced the viability of human colon cancer HCT116 cells in a concentration- and time-dependent manner. Treatment of cells with TQ induced apoptosis, which was associated with the upregulation of Bax and inhibition of Bcl-2 and Bcl-xl expression. TQ also activated caspase-9,-7, and -3, and induced the cleavage of poly-(ADP-ribose) polymerase (PARP). Pretreatment with a pan-caspase inhibitor, z-VAD-fmk, abrogated TQ-induced apoptosis by blocking the cleavage of caspase-3 and PARP. Treatment of cells with TQ also diminished the constitutive phosphorylation, nuclear localization and the reporter gene activity of signal transducer and activator of transcription-3 (STAT3). TQ attenuated the expression of STAT3 target gene products, such as survivin, c-Myc, and cyclin-D1, -D2, and enhanced the expression of cell cycle inhibitory proteins p27 and p21. Treatment with TQ attenuated the phosphorylation of upstream kinases, such as Janus-activated kinase-2 (JAK2), Src kinase and epidermal growth factor receptor (EGFR) tyrosine kinase. Pharmacological inhibition of JAK2 and Src blunted tyrosine phosphorylation of EGFR and STAT3, while treatment with an EGFR tyrosine kinase inhibitor gefitinib inhibited phosphorylation of STAT3 without affecting that of JAK2 and Src in HCT116 cells. Collectively, our study revealed that TQ induced apoptosis in HCT116 cells by blocking STAT3 signaling via inhibition of JAK2- and Src-mediated phosphorylation of EGFR tyrosine kinase.

Asian Pac J Cancer Prev. 2014;15(2):983-7.

Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line.


Nigella sativa (N sativa), commonly known as black seed, has been used in traditional medicine to treat many diseases. The antioxidant, anti-inflammatory, and antibacterial activities of N sativa extracts are well known. Therefore, the present study was designed to investigate the anticancer activity of seed extract (NSE) and seed oil (NSO) of N sativa against a human lung cancer cell line. Cells were exposed to 0.01 to 1 mg/ml of NSE and NSO for 24 h, then percent cell viability was assessed by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed NSE and NSO significantly reduce the cell viability and alter the cellular morphology of A-549 cells in a concentration dependent manner. The percent cell viability was recorded as 75%, 50%, and 26% at 0.25, 0.5, and 1 mg/ml of NSE by MTT assay and 73%, 48%, and 23% at 0.25, 0.5, and 1 mg/ml of NSE by NRU assay. Exposure to NSO concentrations of 0.1 mg/ml and above for 24 h was also found to be cytotoxic. The decrease in cell viability at 0.1, 0.25, 0.5, and 1 mg/ml of NSO was recorded to be 89%, 52%, 41%, and 13% by MTT assay and 85%, 52%, 38%, and 11% by NRU assay, respectively. A-549 cells exposed to 0.25, 0.5 and 1 mg/ml of NSE and NSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment of seedextract (NSE) and seed oil (NSO) of Nigella sativa significantly reduce viability of human lung cancer cells.

Pharmacogn Rev. 2013 Jul;7(14):117-20. doi: 10.4103/0973-7847.120509.

Thymoquinone in the clinical treatment of cancer: Fact or fiction?


Thymoquinone (TQ) is the bioactive phytochemical constituent of the seeds oil of Nigella sativa. In vitro and in vivo research has thoroughly investigated the anticancer effects of TQ against several cancer cell lines and animal models. As a result, a considerable amount of information has been generated from research thus providing a better understanding of the anti-proliferating activity of this compound. Therefore, it is appropriate that TQ should move from testing on the bench to clinical experiments. The purpose of this review is to highlight the potential of TQ as an anticancer agent and the chances of this compound in the clinical treatment of cancer, with special attention on breast cancer treatment.

J Med Food. 2013 Dec;16(12):1121-30. doi: 10.1089/jmf.2012.2624.

Proapoptotic and antimetastatic properties of supercritical CO2 extract of Nigella sativa Linn. against breast cancer cells.


Nigella sativa, commonly referred as black cumin, is a popular spice that has been used since the ancient Egyptians. It has traditionally been used for treatment of various human ailments ranging from fever to intestinal disturbances to cancer. This study investigated the apoptotic, antimetastatic, and anticancer activities of supercritical carbon dioxide (SC-CO2) extracts of the seeds of N. sativa Linn. against estrogen-dependent human breast cancer cells (MCF-7). Twelve extracts were prepared from N. sativa seeds using the SC-CO2 extraction method by varying pressure and temperature. Extracts were analyzed using FTIR and UV-Vis spectrometry. Cytotoxicity of the extracts was evaluated on various human cancer and normal cell lines. Of the 12 extracts, 1 extract (A3) that was prepared at 60°C and 2500 psi (~17.24 MPa) showed selective antiproliferative activity against MCF-7 cells with an IC50 of 53.34±2.15 μg/mL. Induction of apoptosis was confirmed by evaluating caspases activities and observing the cells under a scanning electron microscope. In vitro antimetastatic properties of A3 were investigated by colony formation, cell migration, and cell invasion assays. The elevated levels of caspases in A3 treated MCF-7 cells suggest that A3 is proapoptotic. Further nuclear condensation and fragmentation studies confirmed that A3 induces cytotoxicity through the apoptosis pathway. A3 also demonstrated remarkable inhibition in migration and invasion assays of MCF-7 cells at subcytotoxic concentrations. Thus, this study highlights the therapeutic potentials of SC-CO2 extract of N. sativa in targeting breast cancer.

C R Biol. 2013 Nov-Dec;336(11-12):546-56. doi: 10.1016/j.crvi.2013.10.007. Epub 2013 Nov 19.

Thymoquinone causes multiple effects, including cell death, on dividing plant cells.


Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ.


Life Sci. 2013 Nov 13;93(21):783-90. doi: 10.1016/j.lfs.2013.09.009. Epub 2013 Sep 15.

Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells.



Thymoquinone (TQ), the predominant bioactive constituent of black seed oil (Nigella Sativa), has been shown to possess antineoplastic activity against multifarious tumors. However, the meticulous mechanism of TQ on Akt mediated survival pathway is still unrevealed in breast cancer. Here, we investigated TQ’s mechanism of action against PI3K/Akt signaling and its downstream targets by modulating proteins translational machinery, leading to apoptosis in cancer cells.


MDA-MB-468 and T-47D cells were treated with TQ and evaluated for its anticancer activity through phase distribution and western blot. Modulatory effects of TQ on Akt were affirmed through kinase and drug potential studies.


Studies revealed G1 phase arrest till 24h incubation with TQ while extended exposure showed phase shift to subG1 indicating apoptosis, supported by suppression of cyclin D1, cyclin E and cyclin dependent kinase inhibitor p27 expression. Immunoblot and membrane potential studies revealed mitochondrial impairment behind apoptotic process with upregulation of Bax, cytoplasmic cytochrome c and procaspase-3, PARP cleavage along with Bcl-2, Bcl-xL and survivin downregulation. Moreover, we construed the rationale behind mitochondrial dysfunction by examining the phosphorylation status of PDK1, PTEN, Akt, c-raf, GSK-3β and Bad in TQ treated cells, thus ratifying the involvement of Akt in apoptosis. Further, the consequential effect of Akt inhibition by TQ is proven by translational repression through deregulated phosphorylation of 4E-BP1, eIF4E, S6R and p70S6K.


Our observations for the first time may provide a new insight for the development of novel therapies for Akt overexpressed breast cancer by TQ.



PLoS One. 2013 Sep 9;8(9):e72882. doi: 10.1371/journal.pone.0072882. eCollection 2013.

Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells.


Glioblastoma is the most aggressive and common type of malignant brain tumor in humans, with a median survival of 15 months. There is a great need for more therapies for the treatment of glioblastoma. Naturally occurring phytochemicals have received much scientific attention because many exhibit potent tumor killing action. Thymoquinone (TQ) is the bioactive compound of the Nigella sativa seed oil. TQ has anti-oxidant, anti-inflammatory and anti-neoplastic actions with selective cytotoxicity for human cancer cells compared to normal cells. Here, we show that TQ selectively inhibits the clonogenicity of glioblastoma cells as compared to normal human astrocytes. Also, glioblastoma cell proliferation could be impaired by chloroquine, an autophagy inhibitor, suggesting that glioblastoma cells may be dependent on the autophagic pathway for survival. Exposure to TQ caused an increase in the recruitment and accumulation of the microtubule-associated protein light chain 3-II (LC3-II). TQ also caused an accumulation of the LC3-associated protein p62, confirming the inhibition of autophagy. Furthermore, the levels of Beclin-1 protein expression were unchanged, indicating that TQ interferes with a later stage of autophagy. Finally, treatment with TQ induces lysosome membrane permeabilization, as determined by a specific loss of red acridine orange staining. Lysosome membrane permeabilization resulted in a leakage of cathepsin B into the cytosol, which mediates caspase-independent cell death that can be prevented by pre-treatment with a cathepsin B inhibitor. TQ induced apoptosis, as determined by an increase in PI and Annexin V positive cells. However, apoptosis appears to be caspase-independent due to failure of the caspase inhibitor z-VAD-FMK to prevent cell death and absence of the typical apoptosis related signature DNA fragmentation. Inhibition of autophagy is an exciting and emerging strategy in cancer therapy. In this vein, our results describe a novel mechanism of action for TQ as an autophagy inhibitor selectively targeting glioblastoma cells.

Molecules. 2013 Sep 12;18(9):11219-40. doi: 10.3390/molecules180911219.

Thymoquinone induces mitochondria-mediated apoptosis in acute lymphoblastic leukaemia in vitro.


There has been a growing interest in naturally occurring compounds from traditional medicine with anti-cancer potential. Nigella sativa (black seed) is one of the most widely studied plants. This annual herb grows in countries bordering the Mediterranean Sea and India. Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa. The anti-cancer effect of TQ, via the induction of apoptosis resulting from mitochondrial dysfunction, was assessed in an acute lymphocyte leukemic cell line (CEMss) with an IC50 of 1.5 µg/mL. A significant increase in chromatin condensation in the cell nucleus was observed using fluorescence analysis. The apoptosis was then confirmed by Annexin V and an increased number of cellular DNA breaks in treated cells were observed as a DNA ladder. Treatment of CEMss cells with TQ encouraged apoptosis with cell death-transducing signals by a down-regulation of Bcl-2 and up-regulation of Bax. Moreover, the significant generation of cellular ROS, HSP70 and activation of caspases 3 and 8 were also observed in the treated cells. The mitochondrial apoptosis was clearly associated with the S phase cell cycle arrest. In conclusion, the results from the current study indicated that TQ could be a promising agent for the treatment of leukemia.



Leave a Comment

Your email address will not be published. Required fields are marked *