Germanium and Immune Enhancement

Dr. Weeks’ Comment:   Germanium has not been given the respect it deserves. As a safe and effective stimulant of the immune system, it is highly valuable for those working to recover from cancer. Here are a few inspiring peer reviewed scientific articles to consider:


J Altern Complement Med. 2004 Apr;10(2):337-44.

doi: 10.1089/107555304323062329.

Germane facts about germanium sesquioxide: I. Chemistry and anticancer properties

Bonnie J Kaplan 1W Wesley ParishG Merrill AndrusJ Steven A SimpsonCatherine J Field


This paper reviews the history, chemistry, safety, toxicity, and anticancer effects of the organogermanium compound bis (2-carboxyethylgermanium) sesquioxide (CEGS). A companion review follows, discussing the inaccuracies in the scientific record that have prematurely terminated research on clinical uses of CEGS. CEGS is a unique organogermanium compound first made by Mironov and coworkers in Russia and, shortly thereafter, popularized by Asai and his colleagues in Japan. Low concentrations of germanium occur in nearly all soils, plants and animal life; natural occurrence of the CEGS form is postulated but not yet demonstrated. The literature demonstrating its anticancer effect is particularly strong: CEGS induces interferon-gamma (IFN-gamma), enhances natural killer cell activity, and inhibits tumor and metastatic growth–effects often detectable after a single oral dose. In addition, oral consumption of CEGS is readily assimilated and rapidly cleared from the body without evidence of toxicity. Given these findings, the absence of human clinical trials of CEGS is unexpected. Possible explanations of why the convincing findings from animal research have not been used to support clinical trials are discussed. Clinical trials on CEGS are recommended.





J Altern Complement Med. 2004 Apr;10(2):345-8.

doi: 10.1089/107555304323062338.

Germane facts about germanium sesquioxide: II. Scientific error and misrepresentation

Bonnie J Kaplan 1G Merrill AndrusW Wesley Parish


The preceding paper reviewed the anticancer properties and safety of bis (2-carboxyethylgermanium) sesquioxide (CEGS). An examination of those data leads one to question why this information has not stimulated clinical trials in patients with cancer. The answer is discussed in this paper, which traces the history to an error published in the scientific literature in 1987. The reliance by subsequent authors on secondary sources, citing only the error and not the correction published in 1988, constitutes part of the explanation of why CEGS has been neglected. A second factor is also considered: careless reporting about any germanium-based compound as if the many thousands of germanium compounds were all the same. This combination of a publication error, careless writing, and the reliance on secondary sources appears to be responsible for the neglect of the potential clinical use of this unique germanium compound.





Immune activation of Bio-Germanium in a randomized, double-blind, placebo-controlled clinical trial with 130 human subjects: Therapeutic opportunities from new insights

  • Jung Min Cho,
  • Published: October 19, 2020



Germanium has long been considered a therapeutic agent with anticancer, antitumor, antiaging, antiviral and anti-inflammatory effects. Numerous clinical studies have explored the promising therapeutic effects of organic germanium on cancer, arthritis and senile osteoporosis. The immune activation property of organic germanium is considered the foundation of its various therapeutic effects. However, previous human clinical studies investigating immune activation with organic germanium compounds have certain limitations, as some studies did not strictly follow a randomized, double-blind, placebo-controlled design. To build a more clinically substantiated foundation for the mechanism underlying its immunostimulation, we structured by far the most rigorous clinical study to-date with a group of 130 human subjects to examine changes in immune profiles following germanium supplementation. We used Bio-Germanium, an organic germanium compound naturally synthesized via a yeast fermentation process. An 8-week randomized, double-blind, placebo-controlled study was conducted with 130 subjects with leukocyte counts of 4–8 (×103/μL) divided into the Bio-Germanium group and the placebo group. Anthropometric measurements; blood collection; biochemical analysis; urinalysis; and natural killer cell activity, cytokine and immunoglobulin assays were conducted. Results showed the Bio-Germanium group exhibited NK cell activity increases at effector cell:target cell (E:T) ratios of 50:1, 10:1, 5:1 and 2.5:1 (12.60±32.91%, 10.19±23.88%, 9.28±16.49% and 7.27±15.28%, respectively), but the placebo group showed decreases (P<0.01). The difference in the IgG1 change from baseline to follow-up between the Bio-Germanium and placebo groups was significant (P = 0.044). Our results and earlier clinical study of Bio-Germanium confirm that Bio-Germanium acts as an effective immunostimulant by increasing the cytotoxicity of NK cells and activating immunoglobulin, B cells and tumor necrosis factor (TNF)-α (P<0.05). As we have added newly discovered clinical findings for germanium’s immunostimulation mechanism, we believe Bio-Germanium is a highly promising therapeutic agent and should certainly be further explored for potential development opportunities in immunotherapy.


Germanium is a naturally occurring ultratrace element with a wide application range, from the electronics industry to the dietary supplement industry [12]. Organic germanium has been reported to be a therapeutic agent with anticancer [3], antitumor [45], antiaging [67], antiviral [8] and anti-inflammatory [910] effects; its anticancer and antiviral effects have been observed in vivo, and its antitumor, antiaging and anti-inflammatory effects have been observed both in vivo and in vitro. In addition, organic germanium compounds have been effective in treating cancer and arthritis [1112] and in enhancing immune function [1315] in pathological conditions in preclinical studies.


The novel findings of this randomized, double-blind, placebo-controlled study indicated that the immunostimulation mechanism of Bio-Germanium is associated with the activation of NK cells and immunoglobulin.

Compared with the placebo group, the Bio-Germanium group showed significantly greater increases in NK cell activity at E:T ratios of 50:1, 10:1, 5:1, and 2.5:1. The immunostimulatory capability found in our study shows that Bio-Germanium augmented NK cell activity, one of the key markers of immune strength [6668]. Additionally, the change in IgG1 from the baseline level was significantly different between the Bio-Germanium group and the placebo group.

This result is consistent with that of a previous clinical study showing the immunostimulatory effect of Bio-Germanium in humans. Lee et al. [38] reported that in fifty human subjects ranging in age from 50 to 75 years, B cell (CD19) activity and TNF-α production were increased in the Bio-Germanium group, as indicated by flow cytometric analysis using a monoclonal antibody and by TNF-α enzyme immunometric assay. Similarly, our findings are consistent with those of previous in vivo studies. Joo et al. [39] conducted a plaque-forming cell (PFC) assay and evaluated the effect on antibody production in mice fed Bio-Germanium. This study also showed that the proliferation of B cell subset compositions increased in a dose-dependent manner, from 48.9% (100 mg/kg) to 50.1% (200 mg/kg) to 53.2% (400 mg/kg) to 55.6% (800 mg/kg), and that the PFC count also increased. Another study by Baek et al. [2] showed that the administration of Bio-Germanium induced nitric oxide production and increased superoxide anion release, thereby increasing phagocytosis, macrophage activation and TNF-α production. Most importantly, NK cell-mediated cytotoxicity was also increased in a dose-dependent manner in their in vivo study, a result revalidated by our clinical study.


Leave a Comment

Your email address will not be published. Required fields are marked *