Melatonin for Brain Injury

Dr. Weeks’ Comment:  Melatonin is NOT just a sleep aid. It is a brain protective and Brian regenerative agent. Check out this research.  At Weeks Center for Corrective Health we recommend 60-180mg (high dose) a day.  It also helps people with cancer.

Here is some research to consider:

NeuroChem Int, 1995 May;26(5):497-502.

doi: 10.1016/0197-0186(94)00154-m.

Melatonin stimulates brain glutathione peroxidase activity

Abstract

Exogenously administered melatonin causes a 2-fold rise in glutathione peroxidase activity within 30 min in the brain of the rat. Furthermore, brain glutathione peroxidase activity is higher at night than during the day and is correlated with high night-time tissue melatonin levels. Glutathione peroxidase is thought to be the principal enzyme eliminating peroxides in the brain. This antioxidative enzyme reduces the formation of hydroxyl radicals formed via iron-catalyzed Fenton-type reactions from hydrogen peroxide by reducing this oxidant to water. Since the hydroxyl radical is the most noxious oxygen radical known, induction of brain glutathione peroxidase might be an important mechanism by which melatonin exerts its potent neuroprotective effects.

 

Review
J Pineal Res. 2016 Oct;61(3):253-78.

doi: 10.1111/jpi.12360. Epub 2016 Sep 1.

Melatonin as an antioxidant: under promises but over delivers

Abstract

Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin’s ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin’s capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.

 

Free Radic Biol Med. 2019 Jan;130:215-233.

Abstract

Melatonin is a neurohormone associated with sleep and wakefulness and is mainly produced by the pineal gland. Numerous physiological functions of melatonin have been demonstrated including anti-inflammation, suppressing neoplastic growth, circadian and endocrine rhythm regulation, and its potent antioxidant activity as well as its role in regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others. In this review, we summarize the recent advances related to the multiple protective roles of melatonin receptor agonists, melatonin and N-acetylserotonin (NAS), in brain injury, liver damage, and bone health. Brain injury, including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, and newborn perinatal hypoxia-ischemia encephalopathy, is a major cause of mortality and disability. Liver disease causes serious public health problems and various factors including alcohol, chemical pollutants, and drugs induce hepatic damage. Osteoporosis is the most common bone disease in humans. Due in part to an aging population, both the cost of care of fracture patients and the annual fracture rate have increased steadily. Despite the discrepancy in the pathophysiological processes of these disorders, time frames and severity, they may share several common molecular mechanisms. Oxidative stress is considered to be a critical factor in these pathogeneses. We update the current state of knowledge related to the molecular processes, mainly including anti-oxidative stress, anti-apoptosis, autophagy dysfunction, and anti-inflammation as well as other properties of melatonin and NAS. Particularly, the abilities of melatonin and NAS to directly scavenge oxygen-centered radicals and toxic reactive oxygen species, and indirectly act through antioxidant enzymes are disscussed. In this review, we summarize the similarities and differences in the protection provided by melatonin and/or NAS in brain, liver and bone damage. We analyze the involvement of melatonin receptor 1A (MT1), melatonin receptor 1B (MT2), and melatonin receptor 1C (MT3) in the protection of melatonin and/or NAS. Additionally, we evaluate their potential clinical applications. The multiple mechanisms of action and multiple organ-targeted properties of melatonin and NAS may contribute to development of promising therapies for clinical trials.

 

doi: 10.1016/j.freeradbiomed.2017.01.005.Epub 2017 Jan 6.

Ischemic brain injury: New insights on the protective role of melatonin

 

Abstract

Stroke represents one of the most common causes of brain’s vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.

 

Leave a Comment

Your email address will not be published.