Prostacycline from Omega 6 oils beneficial chemoprevention

Dr. Weeks’ Comment: The current bias in clinical medicine is that omega 3 oils (fish oil: EPS DHA) is beneficial whereas omega 6 oils (vegetable or seed oils) are not.  In truth, any and all good oils can be corrupted (oxidized to the point of rancidity) and then they are bad for you. William Shakespeare  (aka de Vere). wrote about this process in Sonnet #94   “For sweetest things turn sourest by their deeds, Lillies that fester smell far worse than weeds.”  Omega 6 seed oils, when organic and non-GMO, are the most important oils we can consume. (read what Dr Carroll wrote HERE). Unadulterated omega 6 oils have anti cancer benefits as well: 1) active delivery of oxygen to tissue (including cancerous tissue) and 2) anti-inflammation.  (see article below)

I no longer recommend any omega 3 fish or krill or cod liver oils. And don’t ever eat farm raised fish (learn more HERE)

“… Based on the preclinical studies summarized above, the National Cancer Institute is currently funding the Lung Cancer Biomarker and Chemoprevention Consortium to conduct a multicenter study investigating the use of Iloprost (an oral prostacyclin analogue) for lung cancer chemoprevention…”


Prostacyclin in Lung Cancer




Prostacyclin is a naturally occurring eicosanoid that possesses anti-inflammatory and anti-metastatic properties and has a suppressive role in tumor growth.1

Prostacyclin synthase (PGIS) is the final committed enzymatic step in the pathway of PGI2 production, occurring at a branch point where substrate can be directed toward either PGI2, thromboxane A2 (TxA2), or prostaglandin E2 (PGE2) (Figure 1). Eicosanoid production and balance is proving pivotal in lung tumorigenesis.

FIGURE 1. Prostacyclin production and signaling. Phospholipase A2 (PLA2) cleaves arachidonic acid from lipid bilayers to form free fatty acids that are converted to PGH2 by COX-1 and COX-2. Prostacyclin synthase (PGIS) catalyzes the formation of PGI2, which can then bind to the G protein-coupled cell surface receptor (IP) or have effects at the nuclear membrane via the peroxisome-proliferator activated receptors (PPARs).


Prostacyclin (PGI2) is a lipid mediator derived through the cyclo-oxygenase (COX) pathway. The cascade leading to the production of PGI2 is shown in Figure 1. Phospholipase A2 (PLA2) cleaves arachidonic acid from lipid bilayers to form free fatty acids. It is generally believed that rate-limiting steps in the arachidonic acid cascade occur at both arachidonic acid formation and the formation of prostaglandin H2 (PGH2) by prostaglandin H2 synthases (more commonly known as COX-1 and COX-2).2

There are two PGH synthase isozymes called COX-1 and COX-2. Each enzyme is coded by a different gene and is under separate regulatory control.3. PGI2 is one of the main products of arachidonic acid in all vascular tissues tested to date.4

Once released from cells, PGI2 acts as an autocrine and paracrine effector to regulate the function of various differentiated cells and platelets. Prostacyclin has many important biologic effects. It is the most potent endogenous inhibitor of platelet aggregation yet discovered,4  and as a product of the vascular wall endothelium and smooth muscle cells, PGI2 produces vasodilation of all vascular beds studied.5. PGI2 also inhibits both proliferation and DNA synthesis in smooth muscle cells.6


As illustrated in Figure 1, there are two documented signaling pathways for prostacyclin. The first is through its well-described membrane receptor (IP), and the second is at the nuclear membrane via the peroxisome-proliferator activated receptors (PPARs).7

The IP is a single canonical cell membrane-specific seven-transmembrane domain G protein-coupled receptor that has been cloned and characterized,8   with ligand binding resulting in G protein activation and stimulation of adenyl cyclase (thereby increasing intracellular cAMP).9

PPARs are members of the nuclear hormone receptor superfamily that act as ligand-activated transcription factors. Three isoforms have been identified: PPARα, γ, and δ–-all of which bind to specific DNA sequences as heterodimers with the retinoic acid X-receptors and regulate gene transcription.10 PPAR expression is increased in lung cancer and may play a critical role in malignant transformation.11. Eicosanoids, like prostacyclin, are ligands for the PPARδ promoter responsive element7. and can modify PPAR activity. Prostacyclin analogues can activate the PPARδ receptor and have been shown to inhibit the growth of A549 non-small cell lung cancer (NSCLC) cell lines.12

PGIS and PGI2 may also affect PPARγ activity. Our laboratory has shown that lung-specific PGIS overexpression results in a nearly twofold induction of PPARγ expression,13. and PPARγ activation by ligands (like the synthetic thiazolidinediones) results in growth arrest of human NSCLC cell lines. 14

The regulation of prostacyclin production has been an area of concentrated research, and plasma lipoproteins, TxA2 analogues, vitamin D3, and plant sterols have all been shown to induce in vitro prostacyclin production. 15  16.  17

Variations in the PGIS promoter may affect PGI2 synthesis, and the promoter contains highly GC-rich regions and multiple putative AP1 and SP2 transcription factor binding sites. 18

Additionally, a variable number of tandem repeats, varying from three to seven base pairs in length, in the proximal promoter have been correlated with low and high pulse pressures in a Japanese cohort.  19

PGIS promoter polymorphisms in lung cancer and chronic obstructive pulmonary disease are currently being actively investigated by our group.


Based on its anti-inflammatory and anti-metastatic effects and its suppressive role in tumor growth, we studied prostacyclin as a lung cancer chemopreventive agent. Comparative immunohistochemical analyses of NSCLC and normal human lung tissue focusing on the COX pathway have shown that tumors are typically positive for TxA2 synthase, PGD2 synthase, and PGE2 synthase, but negative for PGIS.20

Gene expression analysis of NSCLC shows that PGIS content in human lung adenocarcinomas (AC) is usually down-regulated while PGES content rises.21

However, a small subset of patients with AC whose lung tumors retained PGIS expression survived significantly longer.21

Furthermore, murine lung tumor cells lines produce more PGE2 and less PGI2 than non-tumorigenic cell lines.22

In preclinical chemoprevention studies, we have shown that selective pulmonary PGIS overexpression protects against murine lung tumorigenesis in a variety of murine tumorigenesis models, including tobacco smoke exposure. 

The beneficial effects of PGIS overexpression could be the result of either higher levels of PGI2 or lower levels of PGE2 as a result of depletion of the precursor substrate PGH2. In the multiple carcinogenesis models applied to the PGIS overexpressing animals, elevation of PGI2 (not decreases in PGE2) was consistently required for chemoprevention to occur.

Based on the preclinical studies summarized above, the National Cancer Institute is currently funding the Lung Cancer Biomarker and Chemoprevention Consortium to conduct a multicenter study investigating the use of Iloprost (an oral prostacyclin analogue) for lung cancer chemoprevention.


Inhibition of metastasis by cicaprost in rats with established SMT2A mammary carcinoma growth.

Cancer Detect Prev. 1997; 21: 44-50

View in Article 


Mechanism of the stimulation of prostaglandin H synthase and prostacyclin synthase by the antithrombotic and antimetastatic agent, nafazatrom.

Mol Pharmacol. 1984; 26: 328-335

View in Article 


Dexamethasone inhibits mitogen induction of the TIS10 prostaglandin synthase/cyclooxygenase gene.

J Biol Chem. 1992; 267: 7991-7994

View in Article 


Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation.

Prostaglandins. 1976; 12: 897-913

View in Article 


Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin.

Pharmacol Rev. 1978; 30: 293-331

View in Article 


Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids.

J Clin Invest. 1988; 81: 487-498

View in Article 


Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer.

Proc Natl Acad Sci USA. 2000; 97: 13275-13280

View in Article 


cDNA cloning of a mouse prostacyclin receptor: multiple signaling pathways and expression in thymic medulla.

J Biol Chem. 1994; 269: 9986-9992

View in Article 


Prostacyclin production and mediation of adenylate cyclase activity in the pulmonary artery: alterations after prolonged hypoxia in the rat.

J Clin Invest. 1991; 88: 447-455

View in Article 


Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors.

Mol Cell Biol. 1997; 17: 2166-2176

View in Article 


Peroxisome-proliferator-activated receptors and cancers: complex stories.

Nat Rev Cancer. 2004; 4: 61-70

View in Article 


Peroxisome proliferator-activated receptor delta as a molecular target to regulate lung cancer cell growth.

FEBS Lett. 2006; 579: 3829-3836

View in Article 


Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice.

Cancer Res. 2004; 64: 5897-5904

View in Article 


Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression in non-small-cell lung cancer.

Oncogene. 2004; 23: 100-108

View in Article 


Stimulation of vascular smooth muscle cell prostacyclin and prostaglandin E2 synthesis by plasma high and low density lipoproteins.

Circ Res. 1984; 54: 554-565

View in Article 


Stimulation of prostacyclin synthesis by thromboxane A2-like prostaglandin endoperoxide analogues in cultured vascular smooth muscle cells.

Biochem Biophys Res Commun. 1984; 123: 21-26

View in Article 


Vitamin D3 stimulates the production of prostacyclin by vascular smooth muscle cells.

Prostaglandins. 1991; 42: 127-136

View in Article 


Human gene encoding prostacyclin synthase (PTGIS): genomic organization, chromosomal localization, and promoter activity.

Genomics. 1996; 36: 296-304

View in Article 


Human prostacyclin synthase gene and hypertension: the Suita Study.

Circulation. 1999; 100: 2231-2236

View in Article 


Immunohistochemical expression of cyclooxygenase isoenzymes and downstream enzymes in human lung tumors.

Clin Cancer Res. 2003; 9: 1604-1610

View in Article 


Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model.

Am J Pathol. 2006; 167: 1763-1775

View in Article 


Cytokines differentially regulate the synthesis of prostanoid and nitric oxide mediators in tumorigenic vs. non-tumorigenic mouse lung epithelial cell lines.

Carcinogenesis. 2006; 26: 1196-1206

View in Article 


Manipulation of pulmonary prostacyclin synthase expression prevents murine lung cancer.

Cancer Res. 2002; 62: 734-740

View in Article 



Leave a Comment

Your email address will not be published. Required fields are marked *