Dr. Weeks’ Comment: Outside of the box thinking can save lives. Tetracycline and Doxicycline hinder healthy bone metabolism and so we Corrective Cancer Care™ doctors can use it for stopping cancer in the bones!
Anticancer Drugs. 2003 Nov;14(10):773-8.
Doxycycline and other tetracyclines in the treatment of bone metastasis.
Saikali Z, Singh G.
Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
Abstract
The tetracycline family includes tetracycline, doxycycline and minocycline, all of which have been used as antibiotics effectively for decades. New uses emerged for these compounds after their effect on mitochondrial function was discovered. Cytostatic and cytotoxic activity of these compounds was shown against cell lines of various tumor origins. In addition, tetracyclines and chemically modified tetracyclines inhibit the activity of several matrix metalloproteinases (MMPs). Given the importance of these enzymes in tumor cell invasion and metastatic ability, the potential use of tetracyclines in cancer therapy needed to be investigated. Col-3, a chemically modified tetracycline, is now the subject of clinical trials in cancer patients. However, the potential of tetracyclines in cancer therapy takes on an added dimension in the bone. MMPs have been shown to be important mediators of metastasis formation in the bone, contributing largely to the morbidity of breast cancer and prostate cancer patients. The natural osteotropism of tetracyclines would allow them to be highly effective in the inhibition of MMPs produced by osteoclasts or tumor cells in the bone. This hypothesis has now been confirmed by experimental evidence showing that doxycycline reduces tumor burden in a mouse model of breast cancer-derived osteolytic bone metastasis. This effect is likely due to a combination of multiple roles of doxycycline, including MMP inhibition and a negative effect on osteoclast differentiation and survival. These encouraging results have now paved the way for an ongoing trial of doxycycline in early combination therapy for breast cancer and prostate cancer patients.
AND
Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model
- PMID: 11857423
- DOI: 10.1002/ijc.10168
Abstract
Antibiotic forms of tetracycline exhibit antitumor activity in some tumor models. However, their low in vivo efficacy and associated morbidity limit their long-term application in cancer therapy. This report appraises the efficacy of doxycycline (DC) and non-antimicrobial, chemically modified tetracyclines (CMTs) against prostate cancer. Both DC and several CMTs inhibited prostate tumor cell proliferation in vitro. Some of the CMTs were significantly more potent than DC. One of the CMTs, 6-deoxy, 6-demethyl, 4-de-dimethylamino tetracycline (CMT-3, COL-3), was the most potent inhibitor (50% inhibition dose [GI(50)] < or = 5.0 ,microg/ml). Exposure of tumor cells to CMT-3 induced both apoptosis and necrosis. Mitochondrial depolarization and increased levels of reactive hydroxyl radicals were also observed in cells treated with CMT-3. Cell cycle arrest at the G(0)/G(1) compartment was observed in CMT-3- and DC-treated cells. DC and CMTs also inhibited the invasive potential of the tumor cells in vitro, from 10% (CMT-6) to >90% (CMT-3). CMT-3 and DC decreased matrix metalloproteinase (MMP)-2, tissue inhibitor of MMP (TIMP)-1 and TIMP-2 secretion in treated cultures and inhibited activity of secreted MMPs, CMT-3 was a stronger inhibitor. Daily oral gavage of DC and CMT-3 inhibited tumor growth and metastasis in the Dunning MAT LyLu rat prostate tumor.Decreases in tumor growth (27-35%) and lung metastases were observed (28.9 +/- 15.4 sites/animal [CMT-3-treated] versus 43.6 +/- 18.8 sites/animal [DC-treated] versus 59.5 +/- 13.9 [control]; p < 0.01]. A delay in tumor growth (27 +/- 9.3%, p < 0.05), reduction in metastases (58 +/- 8%) and decrease in tumor incidences (55 +/- 9%, CMT-3-treated) were also observed, when rats were predosed for 7 days. No significant drug-induced morbidity was observed in any of the animals. These results, along with a recently concluded clinical trial, suggest a potential use of CMT-3 as an oral, nontoxic drug to treat metastatic prostate and other cancers.
AND
Chemically modified non-antimicrobial tetracyclines are multifunctional drugs against advanced cancers
- PMID: 21093590
- PMCID: PMC3031750
- DOI: 10.1016/j.phrs.2010.11.003
Abstract
Metastatic cancers account for more than 90% of cancer mortality. The metastasis of all cancers is critically mediated by enzymes that degrade extracellular matrix. Aggressive tumors are characterized by an imbalance between enzymes that degrade ECM and endogenous inhibitors of the enzymes. Matrix metalloproteinases (MMPs) make up the majority of ECM degrading enzymes implicated in cancer metastasis. The potent MMP inhibitory activities of tetracyclines, especially their chemically modified analogs, combined with their relatively well tolerated pharmacological profile, led several researchers to investigate their anticancer potential in a variety of cancers, including melanoma, lung, breast and prostate cancers.Chemically modified non-antibiotic tetracyclines (CMTs or COL) were tested using tumors of prostate, breast and melanomas. Some of these CMTs, notably, CMT-3 and CMT-308 significantly inhibited not only invasive potential and MMP activity, but also inhibited cell proliferation by inducing cell cycle arrest and apoptosis. CMT-3 and CMT-308 were significantly more potent than doxycycline or minocycline in inhibiting tumor cell-derived MMPs and inducing apoptosis in vitro and in vivo.CMT-3 (COL-3) showed potent inhibition of tumor growth in xenografts and in bone metastatic models of prostate cancer. Similar results were also reported in melanoma and breast cancer models. The mechanism by which CMTs kill tumor cells is via generation of hydroxyl free radicals ([OH](-)) which permeate and depolarize mitochondria, which in turn activates caspase mediated apoptosis. Analysis of tumor tissues from CMT-3 treated rats demonstrated reduction in angiogenesis and increase in apoptosis; both emerged as mechanisms of CMT action. These observations led to testing the efficacy of CMT-3 in human clinical trials against several types of cancer with significant outcomes, which are described in the next chapter of this issue.
AND
Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model
Abstract
Antibiotic forms of tetracycline exhibit antitumor activity in some tumor models. However, their low in vivo efficacy and associated morbidity limit their long-term application in cancer therapy. This report appraises the efficacy of doxycycline (DC) and non-antimicrobial, chemically modified tetracyclines (CMTs) against prostate cancer. Both DC and several CMTs inhibited prostate tumor cell proliferation in vitro. Some of the CMTs were significantly more potent than DC. One of the CMTs, 6-deoxy, 6-demethyl, 4-de-dimethylamino tetracycline (CMT-3, COL-3), was the most potent inhibitor (50% inhibition dose [GI(50)] < or = 5.0 ,microg/ml). Exposure of tumor cells to CMT-3 induced both apoptosis and necrosis. Mitochondrial depolarization and increased levels of reactive hydroxyl radicals were also observed in cells treated with CMT-3. Cell cycle arrest at the G(0)/G(1) compartment was observed in CMT-3- and DC-treated cells. DC and CMTs also inhibited the invasive potential of the tumor cells in vitro, from 10% (CMT-6) to >90% (CMT-3). CMT-3 and DC decreased matrix metalloproteinase (MMP)-2, tissue inhibitor of MMP (TIMP)-1 and TIMP-2 secretion in treated cultures and inhibited activity of secreted MMPs, CMT-3 was a stronger inhibitor. Daily oral gavage of DC and CMT-3 inhibited tumor growth and metastasis in the Dunning MAT LyLu rat prostate tumor. Decreases in tumor growth (27-35%) and lung metastases were observed (28.9 +/- 15.4 sites/animal [CMT-3-treated] versus 43.6 +/- 18.8 sites/animal [DC-treated] versus 59.5 +/- 13.9 [control]; p < 0.01]. A delay in tumor growth (27 +/- 9.3%, p < 0.05), reduction in metastases (58 +/- 8%) and decrease in tumor incidences (55 +/- 9%, CMT-3-treated) were also observed, when rats were predosed for 7 days. No significant drug-induced morbidity was observed in any of the animals. These results, along with a recently concluded clinical trial, suggest a potential use of CMT-3 as an oral, nontoxic drug to treat metastatic prostate and other cancers.
AND
Inhibition of tumor cell invasiveness by chemically modified tetracyclines
Abstract
COLO 205 is a cell line derived from a human colon carcinoma with high degradative activity towards extracellular matrix (ECM). It has been shown that COLO 205 cells produce matrix metalloproteinases (MMPs). MMPs are a family of enzymes known to degrade components of the ECM and have been implicated in tumor invasion. In the present study, we have analyzed the multiple effects of chemically modified tetracyclines (CMTs) on the expression and activity of MMPs secreted by COLO 205 cells in vitro with the aim of evaluating these compounds for potential use in management of invasive tumors. Because COLO 205 cells can degrade an interstitial ECM in serum-free medium in vitro, we have been able to compare the effects of the tetracyclines on this measure of invasive activity with their effects on proteinase expression and activity. We demonstrate here that one of the chemically modified tetracyclines, 6-deoxy-6-demethyl-4-de(dimethylamino)tetracycline (CMT-3) can effectively inhibit ECM degradation mediated by COLO 205 cells or their conditioned medium. Gelatin zymography and immunoblots show that CMT-3 has the ability to inhibit release of MMP-2 into conditioned medium as well as to inhibit MMP-2 gelatinolytic activity, which correlates with the results from ECM degradation assays. On the basis of our findings with COLO 205 cells we have expanded our evaluation of the tetracyclines to include effects on a genetically engineered line of MDA-MB-231 breast tumor cells overexpressing MMP-9 at levels over tenfold those of the parent cell line, and on three human prostate tumor cell lines, LNCaP, DU-145, and PC-3. We show here that CMT-3 displays multiple modes of action: inhibiting MMP activity, reducing levels of MMP expression, and exhibiting selective cytotoxicity towards some of the tumor cell lines.